Документ подписан простой электронной подписью Информация о владельце: ФИО: Ершов Петр Петрович

Приложение 2

Дата подписамия 2011, 2025 10:17:48 Уникальный ключ: d716787 (VI) 10:270a97ck: Международная ветеринарная академия» (AHO BO MBA)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ текущего контроля, промежуточной аттестации обучающихся при освоении ОПОП ВО, реализующей ФГОС ВО

по дисциплине **Б1.О.18 Биофизика**

Уровень высшего образования СПЕЦИАЛИТЕТ

Специальность: 36.05.01 Ветеринария Направленность (профиль): Клинический Форма обучения: очная, очно-заочная

Год начала подготовки: 2025

Москва 2025

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

В рамках изучения дисциплины «Б1.О.18 Биофизика» формируются следующие компетенции, подлежащие оценке:

УК-8

Таблина 1

№	Формируемые компетенции	Контролируемые	Оценочное
п/п		разделы (темы) дисциплины	средство
1	УК-8. Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов ИД-1.УК-8 Знать последствия воздействия вредных и опасных факторов на организм животных, человека и природную среду, методы и способы защиты от чрезвычайных ситуаций и военных конфликтов; основы безопасности жизнедеятельности, телефоны служб спасения. ИД-2.УК-8. Уметь выявлять признаки, причины и условия возникновения чрезвычайных ситуаций и военных конфликтов; оценивать вероятность возникновения потенциальной опасности для обучающегося и принимать меры по ее предупреждению в условиях образовательного учреждения; оказывать первую помощь в чрезвычайных ситуациях. ИД-3.УК-8. Владеть навыками по обеспечению безопасности в системе «человек-животные-среда обитания». Владеть методами прогнозирования возникновения опасных или чрезвычайных ситуаций; навыками поддержания безопасных условий жизнедеятельности, в том числе, на основе цифровых технологий	Раздел 1. Механика и биомеханика Раздел 2. Термодинамика и биоэнергетика Раздел 3. Электричество и магнетизм Раздел 4. Оптика и квантовые явления Раздел 5. Атомная и ядерная физика	Устный опрос, тест, контрольная работа, экзамен

2.ПОКАЗАТЕЛИ И КРИТЕРИИ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ НА РАЗЛИЧНЫХ ЭТАПАХ ИХ ФОРМИРОВАНИЯ, ОПИСАНИЕ ШКАЛ ОЦЕНИВАНИЯ

Таблица 2

Планируемые		Оценочное			
результаты освоения	неудовлетворительно	VIORIETRONUTEILHO	хорошо	отлично	средство
компетенции	псудовлетворительно	удовястворительно	хорошо	O131H 1110	

УК-8.

Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов

Планируемые		Уровень освоеі	ния		Оценочное
результаты освоения	неудовлетворительно	средство			
компетенции	неудовлетворительно	удовлетворительно	хорошо	отлично	
ИД-1.УК-8 Знать последствия воздействия вредных и опасных факторов на организм животных, человека и природную среду, методы и способы защиты от чрезвычайных ситуаций и военных конфликтов; основы безопасности	Уровень знаний ниже минимальных требований, имели место грубые ошибки	Минимально допустимый уровень знаний, допущено много негрубых ошибок	Уровень знаний в объеме соответствующе м программе подготовки, допущено несколько негрубых ошибок	знаний в	Устный опрос, тест, контрольная работа, экзамен
жизнедеятельности, телефоны служб спасения. ИД-2.УК-8.	Уровень знаний ниже	Минимально	Уровень знаний		Устный опрос,
Уметь выявлять признаки, причины и условия возникновения чрезвычайных ситуаций и военных конфликтов; оценивать вероятность возникновения потенциальной опасности для обучающегося и принимать меры по ее предупреждению в условиях образовательного учреждения; оказывать первую помощь в чрезвычайных ситуациях.	минимальных требований, имели место грубые ошибки	допустимый уровень	в объеме соответствующе	знаний в	тест, контрольная
ИД-3.УК-8. Владеть навыками по обеспечению безопасности в системе «человек-животныесреда обитания». Владеть методами прогнозирования возникновения опасных или чрезвычайных ситуаций; навыками поддержания безопасных условий жизнедеятельности, в том числе, на основе цифровых технологий.	Уровень знаний ниже минимальных требований, имели место грубые ошибки	Минимально допустимый уровень знаний, допущено много негрубых ошибок	соответствующе	знаний в	Устный опрос, тест, контрольная работа, экзамен

3. ТЕКУЩИЙ КОНТРОЛЬ (КОНТРОЛЬНЫЕ ЗАДАНИЯ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ И НАВЫКОВ)

Текущий контроль проводится по темам лекций и аудиторных занятий в виде устного опроса, обеспечивая закрепление знаний по теоретическому материалу и получению практических навыков по использованию формируемых компетенций для решения задач профессиональной деятельности.

Таблица 3

			таолица .
№ п/п	Оценочное средство	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	Устный опрос	Важнейшее средство, позволяющее оценить	Примерные вопросы для
1		знания и умения обучающегося излагать ответ	опроса
		на поставленный вопрос преподавателя,	
		развивать мышление и речь, повышать	
		уровень самоорганизации и самообразования.	
2	Тест	Важнейшее средство, позволяющее быстро	Примерные вопросы для
2	1001	оценить знания и умения обучающегося,	тестирования
		развивать мышление, повышать уровень	Тестирования
		самоорганизации и самообразования.	
3	Контрольная работа	Важнейшее средство промежуточной	Примерные задания для
3	топтрольная расста	аттестации, позволяющее оценить знания и	контрольной работы
		умения обучающегося по компетенциям	Nonity on Brief Pare 121
		дисциплины, излагать ответ в том числе в	
		стрессовой (незнакомой) ситуации на	
		поставленный вопрос преподавателя,	
		развивать мышление и речь, повышать	
		уровень самоорганизации и самообразования.	
4	Экзамен	Важнейшее средство промежуточной	Примерные вопросы для
-		аттестации, позволяющее оценить знания и	экзамена
		умения обучающегося по компетенциям	
		дисциплины, излагать ответ в том числе в	
		стрессовой (незнакомой) ситуации на	
		поставленный вопрос преподавателя,	
		развивать мышление и речь, повышать	
		уровень самоорганизации и самообразования.	

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ, НЕОБХОДИМЫЕ ДЛЯ ОЦЕНКИ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ В ПРОЦЕССЕ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

4.1. Перечень контрольных вопросов для проведения опроса УК-8

Разлел 1. Механика и биомеханика

Кинематика и динамика материальной точки

- 1. Определение материальной точки, перемещения, скорости, ускорения.
- 2. Поступательное и вращательное движение. Угловая скорость и угловое ускорение.
- 3. Определения массы, силы. Первый и второй законы Ньютона. Определение момента инерции, момента силы.
- 4. Определение импульса, момента импульса. Третий закон Ньютона.

Определение объема и плотности твердого тела

- 1. Процесс измерения, ошибки измерения, виды ошибок.
- 2. Класс точности прибора.
- 3. Статистическая обработка данных.

Колебательное движение, механические волны

- 1. Колебательное движение, гармонический осциллятор, уравнение гармонического осциллятора в интегральной и дифференциальной формах.
- 2. Частота и период колебания, их зависимость от массы колеблющегося груза и упругости пружины.
- 3. Энергия механических колебаний. Максимальная кинетическая и потенциальная энергия колеблющегося тела.
- 4. Затухающие колебания, вынужденные колебания, резонанс.
- 5. Звуковые волны, их природа, распространение в различных средах.
- 6. Восприятие звуковых волн слуховым аппаратом высших животных, закон Вебера-Фехнера.
- 7. Колебательное движение, гармонический осциллятор.
- 8. Частота и период колебания, их зависимость от массы колеблющегося груза и упругости пружины.

Раздел 2. Молекулярная физика, термодинамика и биоэнергетика

Основы термодинамики, степени свободы молекул, первый закон термодинамики

- 1. Определение термодинамики, термодинамической системы, первый закон термодинамики, понятие внутренней энергии.
- 2. Термодинамическое понятие температуры, связь между температурой и средней кинетической энергией, константа Больцмана, уравнение идеального газа, универсальная газовая постоянная.
- 3. Число степеней свободы молекул, теплоемкость.
- 4. Изотермический, изохорический, изобарический и адиабатический процессы, уравнение идеального газа, универсальная газовая постоянная, изотермический, изохорический, изобарический и адиабатический процессы.

Определение коэффициента поверхностного натяжения

Состояние молекул на границе раздела фаз, определение коэффициента поверхностного натяжения и способы его измерения.

Термодинамические параметры и термодинамические функции. Понятие обратимости процесса. Второй закон термодинамики. Свободная энергия

- 1. Факторы, определяющие направление процесса, внутренняя энергия, энтальпия.
- 2. Цикл Карно, понятие приведенного тепла, энтропия.
- 3. Энтропия как критерий обратимости процесса, равенство Клаузиуса, неравенство Клаузиуса. Энтропия как мера неупорядоченности. Энтропия и информация.
- 4. Второй закон термодинамики. Свободная энергия. Термодинамическая выгодность процесса.
- 5. Законы термодинамики применительно к биологическим системам.

Определение коэффициента вязкости динамическим методом

- 1. Понятие вязкого трения и коэффициента вязкости.
- 2. Закон Стокса.
- 3. Динамический метод определения коэффициента вязкого трения.

Раздел 3. Электричество и магнетизм

Электростатика

- 1. Понятие электрического поля, закон Кулона, напряженность электрического поля точечного заряда, диполя, бесконечно длинной нити, бесконечной плоскости, двух плоскостей.
- 2. Работа по перемещению заряда в электрическом поле. Потенциал электрического поля.
- 3. Электроемкость, энергия электрического поля.

Электрический ток в металлах и электролитах

- 1. Понятие электрического тока, характеристики тока. Ток в проводниках, полупроводниках, диэлектриках. Переносчики электрического заряда.
- 2. Закон Ома для участка цепи и для полной цепи. Электродвижущая сила.
- 3. Ток в электролитах. Законы электролиза Фарадея. Число Фарадея.
- 4. Электрический ток в металлах и электролитах, единицы его измерения, понятие о количестве электричества.
- 5. Понятие о силе тока, ее взаимосвязь с напряжением и сопротивлением. Закон Ома для участка цепи и для полной цепи. Понятие электродвижущей силы (э.д.с.).
- 6. Сопротивление проводников, его определяющие факторы, удельное сопротивление.
- 7. Принцип действия измерительного моста. Соотношение активного сопротивления и падения напряжения на участке цепи.
- 8. Балансировка измерительного моста, определение величины активного сопротивления при помощи моста.
- 9. Точность мостовых измерительных методов.

Магнетизм

- 1. Условия для возникновения магнитного поля. Основные характеристики магнитного поля.
- 2. Магнитная индукция, закон Био-Савара-Лапласа.
- 3. Магнитное поле прямого тока, кругового тока и бесконечного длинного соленоида.

Электромагнитная индукция

- 1. Доказательство существования электромагнитной индукции, опыты Фарадея.
- 2. Основные количественные закономерности процесса электромагнитной индукции.
- 3. Индуктивность и самоиндукция.

Электромагнитные колебания

- 1. Электромагнитные колебания в закрытом контуре. Факторы, обусловливающие период и частоту колебаний.
- 2. Активное, индуктивное и емкостное сопротивление.
- 3. Открытый колебательный контур.

Электромагнитные волны

- 1. Опыты Герца по получению электромагнитных волн и определению их характеристик.
- 2. Плотность потока энергии, переносимой электромагнитной волной, вектор Умова-Пойтинга.

Раздел 4. Оптика и квантовые явления

Геометрическая оптика

- 1. Отражение и преломление света. Принцип действия световода.
- 2. Интерференция света, дифракция света, дифракционная решетка.
- 3. Преломление света в призме, линзе. Разрешающая способность оптического прибора.
- 4. Пути увеличения разрешающей способности прибора. Иммерсия.
- 5. Собирающая и рассеивающая линза. Действительное и мнимое изображение.
- 6. Понятие фокусного расстояния. Способы его определения. Оптическая сила линзы.
 - 7 Оптические аберрации.

Основы взаимодействия света с вешеством

- 1. Понятие о поглощении, рассеянии и преломлении света. Закон Ламберта.
- 2. Спектр оптического поглощения вещества. Фотометрическое определение концентрации вещества.
- 3. Спектры поглощения белков, гемсодержащих ферментов.

Волновая оптика

- 1. Интерференция света и способы ее наблюдения, интерференционный микроскоп.
- 2. Дифракция света. Дифракционная решетка. Определение длины волны света дифракционной решеткой.
- 3. Поляризация света. Естественный и поляризованный свет. Поляризация света при отражении и преломлении. Поляриметры и их применение в ветеринарной лабораторной практике. Поляризационный микроскоп.

Квантовые явления

- 1. Фотоэффект, законы фотоэффекта, формула Планка для электромагнитного кванта, формула Эйнштейна для фотоэффекта.
- 2. Взаимодействие электромагнитного излучения с веществом. Воздействие рентгеновского и гамма-излучения на живые системы.
- 3. Строение зрительного анализатора.

Раздел 5. Атомная и ядерная физика

- 1. Строение электронных оболочек атома. Квантовый механизм электронных переходов.
- 2. Волновые свойства электрона. Формула де Бройля. Дифракция электронов. Принцип работы электронного микроскопа и применение его в биологических исследованиях.
- 3. Фотолюминесценция твердых и жидких тел. Правило Стокса. Закон Вавилова. Квантовый механизм люминесценции.
- 4. Получение рентгеновского излучения и его свойства. Спектр рентгеновского излучения. Квантовый механизм возникновения характеристического рентгеновского излучения.

- 5. Взаимодействие рентгеновского излучения с веществом. Рентгенодиагностика и рентгенотерапия. Биологическое действие рентгеновского излучения.
- 6. Спонтанное и вынужденное излучения, создаваемые электронами, находящимися на возбужденных квантовых уровнях.
- 7. Лазерное излучение в биологических исследованиях, в медицине и ветеринарии.
- 8. Состав и характеристики атомного ядра. Нуклоны. Энергия связи нуклонов в ядре.
- 9. Явление радиоактивности. Закон радиоактивного распада. Альфа-, бета- и гамма-излучения.
- 10. Биологическое действие ионизирующих излучений.

4.2. Тестовые задания

УК-8 Способен создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов

ИД1, УК-8 Знать последствия воздействия вредных и опасных факторов на организм животных, человека и природную среду, методы и способы защиты от чрезвычайных ситуаций и военных конфликтов; основы безопасности жизнедеятельности, телефоны служб спасения.

ИД2, УК-8 Уметь выявлять признаки, причины и условия возникновения чрезвычайных ситуаций и военных конфликтов; оценивать вероятность возникновения потенциальной опасности для обучающегося и принимать меры по ее предупреждению в условиях образовательного учреждения; оказывать первую помощь в чрезвычайных ситуациях.

ИДЗ, УК-8 Владеть навыками по обеспечению безопасности в системе «человек-животные-среда обитания». Владеть методами прогнозирования возникновения опасных или чрезвычайных ситуаций; навыками поддержания безопасных условий жизнедеятельности, в том числе, на основе цифровых технологий.

Номер	Содержание вопроса	Правильный ответ	Компетенция/	Уровень	Наименование
задания			индикатор	сложности	дисциплины
					(практики),
					формирующей
					данную
					компетенцию
					(с указанием
					страницы
					файла, с
					которой взят
					вопрос)

	Задание за	крытого типа			
1.	Величина коэффициента Пуассона для большинства биообъектов, близкая к 0,5, свидетельствует о том, что они: 1) Подвергаются обратимой деформации; 2) Подвергаются необратимой деформации; 3) Практически несжимаемы; 4) Обладают собственным магнитным моментом.	Практически несжимаемы;	ИД1, УК-8	1 уровень, простой	Б1.О.18 Биофизика
2.	Движение крови как ньютоновской жидкости описывается: 1) Уравнением Лапласа; 2) Законом внутреннего трения; 3) Вторым законом Ньютона; 4) Законом Архимеда.	Законом внутреннего трения;	ИД1, 2,УК-8	1 уровень, простой	Б1.О.18 Биофизика
3.	Уравнение Захарченко применимо для описания: 1) Движения крови как неньютоновской жидкости; 2) Распространения потенциала действия; 3) Распространения ультразвуковых волн в тканях организма; 4) Механоэлектрической обратной связи в сердце.	Движения крови как неньютоновской жидкости;	ИД1, 2,УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
4.	В аорте величина скорости сдвига приблизительно равна: 1) 50 c ⁻¹ ; 2) 100 c ⁻¹ ; 3) 150 c ⁻¹ ; 4) 200 c ⁻¹ .	2) 100 c-1;	ИД1, УК-8	1 уровень, простой	Б1.О.18 Биофизика

5.	Для моделирования вязкоупругих свойств мягких тканей применяется: 1) Призма Ньютона; 2) Тело Сент-Венана; 3) Фотоумножитель; 4) Фонендоскоп.	Тело Сент-Венана;	ИД1, УК-8	1 уровень, простой	Б1.О.18 Биофизика
6.	Особенностью мягких тканей является: 1) Наличие только упругих свойств; 2) Наличие только вязкостных свойств; 3) Непостоянный модуль Юнга; 4) Непостоянная величина магнетона Бора.	Непостоянный модуль Юнга;	ИД2, УК-8	1 уровень, простой	Б1.О.18 Биофизика
7.	Объёмная скорость кровотока в системе СИ измеряется в: 1) м/с; 2) м3/с; 3) с3/м; 4) с/м3.	м3/с;	ИД2, УК-8	1 уровень, простой	Б1.О.18 Биофизика
8.	 Формула Моенса – Кортевега позволяет рассчитать: Величину мембранного потенциала в конце периода реполяризации; Оптическую силу хрусталика; Величину кровяного давления в камерах сердца; Фазовую скорость распространения пульсовой волны по сосудам. 	Фазовую скорость распространения пульсовой волны по сосудам.	ИД1, 2УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика

9.	Формула Пуазейля в строгом случае применима к: 1) Аорте; 2) Венам нижних конечностей; 3) Жёстким трубам; 4) Грудному лимфатическому протоку.	Жёстким трубам;	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
10.	Уравнение Хилла описывает: 1)Зависимость скорости сокращения мышцы от нагрузки; 2)Гемодинамические процессы в системе микрососудов; 3)Распространение пульсовой волны по крупным сосудам; 4)Распространение потенциала действия в ткани сердца.	Зависимость скорости сокращения мышцы от нагрузки;	ИД3, УК-8		Б1.О.18 Биофизика
11.	 Выберите верное определение осмоса: Осмос – это диффузия молекул воды из области большей концентрации растворённого вещества в область с его меньшей концентрацией. Осмос – это диффузия молекул воды из области меньшей концентрации растворённого вещества в область с его большей концентрацией. Осмос – это процесс перемещения молекул воды из области с большим химическим потенциалом воды в область с меньшим химическим потенциалом воды через мембрану, разграничивающую эти две области и проницаемую только для молекул воды. Осмос – это процесс, обратный диффузии. 	Осмос — это процесс перемещения молекул воды из области с большим химическим потенциалом воды в область с меньшим химическим потенциалом воды через мембрану, разграничивающую эти две области и проницаемую только для молекул воды.	ИД1, УК-8	1 уровень, простой	Б1.О.18 Биофизика

12.	Осмотическое давление – это: 1) Давление, возникающее в системе в результате осмоса и препятствующее его дальнейшему протеканию; 2) Давление, которое необходимо приложить, чтобы начался процесс осмоса; 3) Внешнее давление, которое необходимо приложить для прекращения осмоса; 4) Давление, являющееся причиной осмоса.	Давление, возникающее в системе в результате осмоса и препятствующее его дальнейшему протеканию;	ИД1,2,УК-8	1 уровень, простой	Б1.О.18 Биофизика
13.	Процесс, обратный осмосу, называется: 1) Диффузией; 2) Аномальным осмосом; 3) Обратным осмосом; 4) Электрофорезом.	Обратным осмосом;	ИД1, УК-8	1 уровень, простой	Б1.О.18 Биофизика
14.	Какие соединения обладают высоким потенциалом переноса групп? 1) Гидрокарбонат; 2) ГТФ; 3) Фосфоенолпируват; 4) Угарный газ; 5) АТФ; 6) Креатинфосфат.	2,3,5,6	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
15.	Какие соединения участвуют в переносе электронов в процессах клеточного метаболизма? 1) Креатинфосфат; 2) НАД;	2,3,5,6	ИД3, УК-8	2 уровень,	Б1.О.18 Биофизика

	 3) ФАД; 4) АТФ; 5) НАДФ; 6) ФМН; 7) Ацетил-КоА. 			средне- сложный	
16.	В состав дыхательной цепи митохондрий входят: 1) Гемоглобин; 2) НАДН-дегидрогеназа; 3) Цитохром с; 4) Цитохром Р ₄₅₀ ; 5) Глутатионредуктаза; 6) Сукцинатдегидрогеназа.	2,3,6	ид1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
17.	К способам теплообмена организма с окружающей средой относятся: 1) Термоэлектронная эмиссия; 2) Теплопроводность; 3) Испарение; 4) Вакуумная десорбция; 5) Конвекция.	2,3,5	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
18.	К видам подвижности липидов в биологических мембранах относятся: 1) Флип-флоп-переходы; 2) Гидролиз фосфолипазой С; 3) Латеральная диффузия;	1,3	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика

	4) Фазовые переходы;5) Конъюгирование с углеводами.				
19.	К пассивным видам транспорта молекул через биологическую мембрану относятся: 1) Осмос; 2) Работа Na ⁺ /K ⁺ -АТФазы; 3) Простая диффузия; 4) Симпорт глюкозы с Na+; 5) Облегчённая диффузия; 6) Работа протонной помпы.	1,3,5	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
20.	В цикле работы ионного канала выделяют следующие стадии: 1) Открытие; 2) Инактивация; 3) Закрытие; 4) Покой; 5) Активация.	2,4,5	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
21.	В состав Ca _V GCh входят следующие субъединицы: 1) α ; 2) α_1 ; 3) β ; 4) $\alpha_2\delta$ -комплекс; 5) γ ; 6) $\alpha_2\varepsilon$ -комплекс.	2,3,4,5	ИД1, УК-8	3 уровень, сложный	Б1.О.18 Биофизика

22.	Активирующие влияния на Ca _V GCh оказывают: 1) Протеинкиназа A; 2) Протеинкиназа G; 3) Протеинкиназа C; 4) Фосфоламбан; 5) Фосфолипаза C.	1,3	ИД1, УК-8	3 уровень, сложный	Б1.О.18 Биофизика
23.	К патологиям, связанным с дефектами ионных каналов, относятся: 1) Остеохондроз; 2) Муковисцидоз; 3) Синдром Бругада; 4) Синдром удлинённого интервала QT; 5) Тяжёлая миоклоническая эпилепсия младенческого возраста.	2,3,4,5	ИД2, УК-8	3 уровень, сложный	Б1.О.18 Биофизика
24.	Величину мембранного потенциала позволяет рассчитать уравнение: 1) Гольдмана; 2) Нернста – Планка; 3) Гольдмана – Ходжкина – Катца; 4) Теорелла.	Гольдмана — Ходжкина — Катца;	ИД1, УК-8	3 уровень, сложный	Б1.О.18 Биофизика
25.	В уравнение Гольдмана – Ходжкина – Катца входят концентрации следующих ионов: 1) Ca ²⁺ ; 2) Na ⁺ ;	2,3,5	ИД1, УК-8	3 уровень, сложный	Б1.О.18 Биофизика

	3) K ⁺ ; 4) Mg ²⁺ ; 5) Cl ⁻ ; 6) Mn ²⁺ .				
26.	Суммарный трансмембранный ток слагается из компонентов: 1) Ёмкостный ток; 2) Ток эмиссии; 3) Ток коллектора; 4) Ионные токи; 5) Ток эмиттера.	1,4	ИД1, УК-8	3 уровень, сложный	Б1.О.18 Биофизика
27.	К биопотенциалам относятся: 1) Потенциал покоя; 2) Потенциал электрического поля; 3) Локальный ответ; 4) Электрохимический потенциал; 5) Пассивный электротонический потенциал; 6) Водный потенциал; 7) Потенциал действия.	1,3,5,7	ИД1, УК-8	2 уровень, средне- сложный	Б1.О.18 Биофизика
28.	Пассивные электрические свойства мембраны характеризуются следующими величинами: 1) Электрический заряд; 2) Электрохимические градиенты ионов; 3) Постоянная длины; 4) Толщина примембранных слоёв воды; 5) Постоянная времени.	3,5	ИД1, УК-8	3 уровень, сложный	Б1.О.18 Биофизика

29.	Потенциал действия нервной клетки обеспечивается токами следующих ионов:	2,3	ИД1, УК-8	2 уровень,	Б1.О.18 Биофизика
	1) C_{2}^{2+} .				2110 ф11011111
	1) Ca ²⁺ ;			средне-	
	2) Na ⁺ ;			сложный	
	3) K ⁺ ; 4) Mg ²⁺ ;				
	5) Cl ⁻ ;				
	6) Mn ²⁺ .				
	O) WIII .				
30.	Биоэлектрическую активность сердца можно изучать при	2,3	ИД3, УК-8	2	Б1.О.18
	помощи:			уровень,	Биофизика
	1) DwaVE.				
	 3xoKΓ; 3KΓ; 			средне-	
				сложный	
	3) Векторной ЭКГ; 4) КТ;				
	5) MPT;				
	6) ЭЭΓ.				
	0) 551.				
31.	Субстратами механоэлектрической обратной связи в сердце	1,3	ИД3, УК-8	2	Б1.О.18
	выступают:			уровень,	Биофизика
	1) Сердечные фибробласты;				1
	2) Макрофаги;			средне-	
	_ / _ 			сложный	
	3) Кардиомиоциты;4) Эндотелиоциты венечных артерий;				
	5) Перикард.				
	э) перикард.				

32.	К законам фотолюминесценции относятся:	1,3,4,6	ИД3, УК-8	2	Б1.О.18
	1) Правило Каши;			уровень,	Биофизика
	2) Закон Бугера – Ламберта – Бера;			средне-	
	3) Правило Левшина;				
	4) Закон Вавилова;			сложный	
	5) Закон Стефана – Больцмана;				
	6) Закон Стокса.				
33.	В живых организмах хемилюминесценция бывает следующих	2,5	ИД3, УК-8	3	Б1.О.18
	видов:	,		уровень,	Биофизика
	1) Фосфоресценция;			сложный	
	2) Биохемилюминесценция;				
	3) Люминесценция;				
	4) Фотолюминесценция;5) Биолюминесценция				
34.	К основным источникам свободных радикалов в клетке	1,3,4	ИД2, УК-8	2	Б1.О.18
	относятся:	, ,		уровень,	Биофизика
	1) Митохондриальная цепь переноса электронов;				T
	2) Гексокиназа;			средне-	
	3) Система микросомального окисления;			сложный	
	4) НАДФН-оксидаза;				
	5) Элонгазы жирных кислот;				
	6) Карнитинацилтрансферазы.				

35.	К промежуточным продуктам свободно-радикального	1,3,4	ИД1, УК-8	3	Б1.О.18
	перекисного окисления липидов относятся:			уровень,	Биофизика
	1) Алкильные радикалы;			сложный	
	2) Пероксид водорода;				
	3) Гидроперекиси липидов;				
	4) Алкоксильные радикалы;				
	5) Оксид азота;				
	6) Гидропероксиэйкозатетраеноаты (ГПЭТЕ).				
36.	В кинетике хемилюминесценции ПОЛ можно выделить стадии:	2,4,5,7	ИД2, УК-8	3	Б1.О.18
	1) Илиничин в в в и в в в в в в в в в в в в в в в			уровень,	Биофизика
	1) Инициирование цепи; 2) Быстрая вспышка;				1
	3) Разветвление цепи;			сложный	
	4) Медленная вспышка;				
	5) Латентный период;				
	6) Обрыв цепи;				
	7) Стационарная хемилюминесценция.				
37.	К методам рентгенодиагностики относятся:	2,4,5,6	ИД1, УК-8	1	Б1.О.18
		, , ,		Vacabolii	Биофизика
	1) MPT;			уровень,	Впофизика
	2) Флюорография;3) ЭЭГ;			простой	
	4) Рентгенография;				
	5) Флюороскопия;				
	6) Рентгеновская компьютерная томография;				
	7) ЭНМГ.				

38.	К методам радиодиагностики относятся: 1) Радиоиммунный анализ; 2) Сцинтиграфия; 3) Однофотонная эмиссионная компьютерная томография; 4) Радиоуглеродное датирование; 5) Позитронно-эмиссионная томография.	2,3.5	ИД3, УК-8	3 уровень, сложный	Б1.О.18 Биофизика
39.	В основе метода МРТ лежит следующее физическое явление: 1) Электромагнитная индукция; 2) Магнитоэлектрическая индукция; 3) Ядерный магнитный резонанс; 4) Безызлучательные переходы атомов; 5) Электронный парамагнитный резонанс.	Ядерный магнитный резонанс;	ИД1, УК-8	1 уровень, простой	Б1.О.18 Биофизика
40.	Виды релаксации вектора макроскопической намагниченности: 1) Спин-решёточная; 2) Спин-спиновая; 3) RC-релаксация; 4) Поверхностная; 5) Глубокая	1,2	ИД1,2, УК-8	3 уровень, сложный	Б1.О.18 Биофизика

4.3. Контрольная работа

УК-8

- 1. Вычислите общее изменение энтропии ΔS в открытой системе, если известно, что в результате необратимых процессов внутри нее выделилось Qi=124 кДж теплоты, 25% которой передалось в окружающую среду. Температура системы поддерживается постоянной и равна $t=37\,^{\circ}\mathrm{C}$.
- 2. Осмотическая работа Aосм, затраченная на перенос 3 нмоль ионов хлора из гигантского аксона кальмара наружу, составила 8,7 мкДж при температуре t=27°C. Определите отношение концентраций co/ci снаружи и внутри клетки.
- 3. При переносе 5 нмоль ионов калия из мышечного волокна лягушки в межклеточную среду работа, затраченная на преодоление сил электрического отталкивания, составила Aэл = 42,24 мкДж. Вычислите разность потенциалов $\Delta \phi$ на цитоплазматической мембране.
- 4. Вычислите изменение электрохимического потенциала прил переносе ионов натрия в клетку из внеклеточной среды, если известно, что концентрация этих ионов снаружи в 10 раз больше, чем внутри клетки, а внутренняя сторона мембраны клетки имеет потенциал $\phi i = -70$ мВ (наружный потенциал принят равным нулю). Температура t = 37°C.
- 5. В результате необратимого процесса внутри системы энтропия возрастает на ΔiS = 8,5 кДж/К за время t = 10 с. Вычислите диссипативную функцию β этого процесса, если система поддерживается при температуре T = 300 К.
- 6. При переносе неполярного соединения из полярного растворителя в воду при температуре $t=25\,^{\circ}\mathrm{C}$ энтальпия понижается на $\Delta H=-8,3$ кДж/моль, а энтропия на $\Delta S=-68$ Дж/(моль·К). Вычислите изменение свободной энергии Гиббса ΔG в этом процессе.

4.4. Перечень вопросов для подготовки к экзамену

УК-8

- 1. Системы отсчета. Скорость как производная пути по времени. Обобщение понятия скорости для химических реакций, переноса тепла и электрического заряда.
- 2. Понятие градиента и интенсивности переноса физических величин. Применение этих понятий в явлениях переноса.
- 3. Диффузия. Закон Фика. Явление диффузии в биологических системах, виды диффузии.
- 4. Теплопроводность. Закон Фурье. Явление теплопроводности в живых организмах.

- Уравнение и графики смещения, скорости и ускорения гармонического осциллятора.
 Полная энергия осциллятора.
- 6. Вынужденные колебания. Резонанс и резонансная кривая. Резонансные явления в живых организмах.
- 7. Волны в упругих средах. Поперечные и продольные волны. Длина волны. Уравнение волны. Перенос энергии волной.
- 8. Природа звука. Скорость звука и ее вычисление. Акустическое давление. Интенсивность звука. Отражение и поглощение звука.
- 9. Звук как психофизическое явление. Кривая чувствительности человеческого уха. Закон Вебера-Фехнера. Уровень интенсивности звука и единица его измерения. Шум и его влияние на животных.
- 10. Инфразвук, его физические характеристики (отражение, поглощение, интенсивность, акустическое сопротивление). Методы получения и биологическое действие инфразвука.
- 11. Методы получения и регистрации ультразвука (пьезоэлектрический и магнитострикционный). Физические характеристики ультразвука (частота, интенсивность, отражение на границе раздела двух сред, акустическое сопротивление).
- 12. Взаимодействие ультразвука с биообъектами. Применение ультразвука в ветеринарии.
- 13. Гидродинамика идеальной жидкости. Уравнение Бернулли и следствия из него.
- 14. Физические закономерности движения крови в сосудистой системе.
- 15. Течение вязкой жидкости. Формула Ньютона. Коэффициент вязкости и его единица измерения. Определение коэффициента вязкости методом Стокса.
- 16. Поверхностное натяжение жидкостей. КПН и его измерение с помощью сталагмометра. Значение КПН в клинической ветеринарии.
- 17. Основные законы постоянного тока (закон Ома для участка цепи, понятие ЭДС, закон Ома для замкнутой цепи, соединение резисторов, работа тока).
- 18. Мостик Уитстона, его расчет и метод определения удельного сопротивления с помощью мостика.
- 19. Магнитное поле тока. Опыты Эрстеда и Ампера. Закон Био-Савара-Лапласа и его применение.
- 20. Электромагнитная индукция. Опыты Фарадея. Правило Ленца. Индуктивность.
- 21. Электромагнитное поле. Электромагнитные волны и их свойства.
- 22. Мембранная разность потенциалов. Формула мембранного потенциала. Биопотенциалы покоя и действия.
- 23. Электромагнитная природа света. Кривая чувствительности человеческого глаза. ИК-

- и УФ-излучения, их физические свойства и применение в ветеринарии и зоотехнике.
- 24. Законы отражения света. Построение изображения предмета в плоском зеркале. Понятие о мнимом изображении.
- 25. Преломление света. Закон преломления. Абсолютный и относительный показатели преломления. Полное внутреннее отражение и применение этого явления в оптических приборах. Световоды.
- 26. Трехгранная призма. Построение хода светового луча в призме. Нахождение угла отклонения луча призмой.
- 27. Линзы и их типы. Формула тонкой линзы. Построение изображения предмета в линзах.
- 28. Микроскоп и его физические свойства: увеличение и предел разрешения. Построение хода лучей в микроскопе.
- 29. Поглощение света. Закон Бугера-Бера. Явления, сопровождающие поглощение света. Понятие о фотохимических реакциях.
- 30. Фотоэффект и его объяснение квантовой теорией. Уравнение Эйнштейна. Фотобиологические реакции.
- 31. Строение атома. Постулаты Бора. Излучение и поглощение света атомами. Энергетические уровни в атоме водорода. Объяснение спектральных закономерностей.
- 32. Люминесценция. Квантовый механизм люминесценции. Правило Стокса для люминесценции и его объяснение. Люминесцентный анализ в ветеринарии.
- 33. Биофизика зрительного восприятия. Строение фоторецепторов.
- 34. Теория цветного зрения Юнга-Гельмгольца.
- 35. Погрешности измерений. Виды погрешностей. Значащие цифры приближенного числа и правила округления приближенных чисел.
- 36. Правила обработки результатов прямых измерений.
- 37. Правила обработки результатов косвенных измерений.

5. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И (ИЛИ) ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы, представлен в разделе 1.

Оценка качества освоения дисциплины включает:

- текущий контроль успеваемости;

промежуточную аттестацию.

Оценка качества освоения дисциплины	Форма контроля	Краткая характеристика формы контроля	Оценочное средство и его представление в ФОС
Текущий контроль успеваемости	Устный опрос	Используется для оценки качества освоения обучающимися части учебного материала дисциплины и уровня сформированности соответствующих компетенций (части компетенции). Оценивается по 4-балльной шкале.	Примерный перечень вопросов
	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося	Примерные тестовые задания
Промежуточная аттестация	Экзамен/зачёт	Средство, позволяющее оценить качество освоения обучающимся дисциплины	Примерный перечень вопросов к зачёту и к экзамену

Критерии оценивания результатов обучения по дисциплине и выставления оценок

		111
		Шкала оценивания
Форма	Критерии оценивания результатов обучения	результатов
контроля	по дисциплине и выставления оценок	обучения по
		дисциплине
	Оценка «отлично» дается, если ответы на все	
Устный опрос	обсуждаемые вопросы, в том числе,	
	дополнительные, даны верно и полно.	
Тест	Оценка «отлично» дается, если от 86% до 100%	
1601	заданий выполнены верно.	
	Оценка «отлично» дается, если теоретическое	
	содержание курса освоено полностью, без	«ОТЛИЧНО»
	пробелов, необходимые практические навыки	
Экзамен	работы с освоенным материалом сформированы,	
Экзамсн	все предусмотренные программой обучения	
	учебные задания выполнены, качество их	
	выполнения оценено числом баллов, близким к	
	максимальному.	
	Оценка «хорошо» дается, если ответы на все	
Устный опрос	обсуждаемые вопросы даны, но некоторые из них	
эстный опрос	раскрыты не полностью либо содержат	//V0201110//
	незначительные ошибки или неточности.	«хорошо»
Тест	Оценка «хорошо» дается, если от 69% до 85%	
1601	заданий выполнены верно.	

Форма контроля	Критерии оценивания результатов обучения по дисциплине и выставления оценок	Шкала оценивания результатов обучения по дисциплине
Экзамен	Оценка «хорошо» дается, если теоретическое содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками.	
Устный опрос	Оценка «удовлетворительно» дается, если ответы на 1/3 обсуждаемых вопросов не даны или даны не верно, тогда как ответы на 2/3 вопросов даны верно.	
Тест	Оценка «удовлетворительно» дается, если от 61% до 68% заданий выполнены верно.	
Экзамен	Оценка «удовлетворительно» дается, если теоретическое содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки.	«удовлетворительн о»
Устный опрос	Оценка «неудовлетворительно» дается, если более 2/3 ответов на обсуждаемые вопросы неверны.	
Тест	Оценка «неудовлетворительно» дается, если более 50% заданий выполнены неверно.	
Экзамен	Оценка «неудовлетворительно» дается, если теоретическое содержание курса не освоено, необходимые практические навыки работы не сформированы, все выполненные учебные задания содержат грубые ошибки, дополнительная самостоятельная работа над материалом курса не приведет к какому-либо значимому повышению качества выполнения учебных заданий.	«неудовлетворител ьно»

6. ДОСТУПНОСТЬ И КАЧЕСТВО ОБРАЗОВАНИЯ ДЛЯ ЛИЦ С ОВЗ

При необходимости инвалидам и лицам с ограниченными возможностями здоровья предоставляется дополнительное время для подготовки ответа на зачете. При проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья могут использоваться собственные технические средства.

Процедура оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине предусматривает предоставление информации в формах, адаптированных к ограничениям их здоровья и восприятия информации:

Для лиц с нарушениями зрения:

- в печатной форме увеличенным шрифтом,

в форме электронного документа.

Для лиц с нарушениями слуха:

- в печатной форме,
- в форме электронного документа.
 Для лиц с нарушениями опорно-

для лиц с нарушениями опорно двигательного аппарата

- в печатной форме, аппарата:
- в форме электронного документа.

При проведении процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья по дисциплине обеспечивает выполнение следующих дополнительных требований в зависимости от индивидуальных особенностей, обучающихся:

- а) инструкция по порядку проведения процедуры оценивания предоставляется в доступной форме (устно, в письменной форме);
- б) доступная форма предоставления заданий оценочных средств (в печатной форме, в печатной форме увеличенным шрифтом, в форме электронного документа, задания зачитываются преподавателем);
- в) доступная форма предоставления ответов на задания (письменно на бумаге, набор ответов на компьютере, устно).

При необходимости для обучающихся с ограниченными возможностями здоровья и инвалидов процедура оценивания результатов обучения по дисциплине может проводиться в несколько этапов. Проведение процедуры оценивания результатов обучения инвалидов и лиц с ограниченными возможностями здоровья допускается с использованием дистанционных образовательных технологий.